Fremont, CA 94538 Tel: +1 (800) 421-4149, Fax: +1 (510) 824-1490, support@biogenex.com ECREP # DATA SHEET eFISH SYT Dual Color Break Apart Probe Catalog No. FP049-10XE- 100μl-10 test FP049-20XE- 200μl-20 test Doc No: 932-FP049E Rev: D Date of Release: 05-Aug-2020 Material Provided: One vial of eFISH probe in hybridization buffer (RTU). ### **Recommended detection system (Not supplied):** Either of the following detection system is recommended depending on the automation/manual platform used: | eFISH Kit | Cat # | Description | |-------------|-------------|-------------| | eFISH Histo | DF-500-20XE | Automation | | eFISH Cyto | DF-510-20XE | Automation | #### **Intended Use:** The BioGenex eFISH SYT Dual Color Break Apart Probe is designed to be used for the detection of translocations involving the SYT gene at 18q11 in formalin-fixed, paraffinembedded tissue or cells by fluorescence in situ hybridization (FISH). BioGenex eFISH SYT Dual Color Break Apart Probecomes in hybridization buffer. The probe contains green-labeled polynucleotides (Green: excitation at 503 nm and emission at 528 nm, similar to FITC), which target sequences mapping in 18q11 proximal to the SYT gene, and orangelabeled polynucleotides (Orange: excitation at 547 nm and emission at 572 nm, similar to rhodamine), which target sequences mapping in 18q11 distal to the SYT gene ### **Summary and Explanation** Fluorescence *in situ* hybridization (FISH) is a robust technique of cytogenetic used for the detection of chromosomal aberrations, presence or absence of specific DNA sequence in native context. In this technique florescent probes bind to the target sequence of DNA in chromosome. High specificity and sensitivity coupled rapid and an accurate result has proven role of FISH in both research and diagnosis of solid tumor and hematological malignancies. As technique of cancer cytogenetics, FISH, can be used to identify genetic aberrations viz., deletions, amplification and translocation in tissue sections or within individual cells. FISH is also used for use in genetic counseling, medicine, and species identification. FISH can also be used to detect and localize specific RNA targets in cells, circulating tumor cells, and tissue samples^{1,2,3,4,5}. In FISH procedure, fixed tissue sections are pretreated to expose target DNA or mRNA sequences. An appropriately labeled probe is hybridized to the exposed target DNA or mRNA sequences in the cells. Subsequent stringent washing steps remove any probe that is non-specifically bound to the tissue section. Subsequently slides are mounted using DAPI/antifade and can be visualized under fluorescence microscope using appropriate filter set ## **Principles of the Procedure** *In Situ* hybridization (ISH) allows the detection and localization of definitive nucleic acid sequences directly within a cell or tissue. High specificity is ensured through the action of annealing of fluorescence probe nucleic acid sequence to complementary target nucleic acid sequence. ISH techniques can be used to identify genetic aberrations like deletions, amplification, and translocationin tissue sections or within individual cells. # Storage and Handling The BioGenex eFISH SYT Dual Color Break Apart Probe must be stored at 2-8°C protected from light and is stable through the expiry date printed on the label. # **Specimen Collection and Slide Preparation** Tissues fixed in 10% (v/v) formalin are suitable for use prior to paraffin embedding and sectioning. # **FISH Staining procedure** - (a) The BioGenex eFISH probes are supplied in hybridization buffer and used without further dilution. - (b) Protocol: Please refer to the eFISH probe specific instruction/protocol for automated or semi-automated FISH processing platform (Xmatrx®-Infinity, Xmatrx®-Nano and Xmatrx®-mini. Further processing, such as washing and counter-staining, can becompleted according to the user's needs. For a particularly user-friendlyperformance, we recommend the use of a BioGenexeFISH kit. These systems were also used for the confirmation of appropriateness of the BioGenex eFISH SYT Dual Color Break Apart Probe. **Disclaimer:** The above information is provided for reference only. Each end-user is responsible for developing and validating optimal testing conditions for use with this product. #### **Troubleshooting** Contact BioGenex Technical Service Department at 1-800-421-4149 or your local Fremont, CA 94538 Tel: +1 (800) 421-4149, Fax: +1 (510) 824-1490, support@biogenex.com **distributor** to report unusual staining. ## **Expected Results** The BioGenex eFISH SYT Dual Color Break Apart Probe is a mixture of two direct labeled probes hybridizing to the 18q11 band. The orange fluorochrome direct labeled probe hybridizes distal to the SYT gene, the green fluorochrome direct labeled probe hybridizes proximal to that gene In an interphase nucleus lacking a translocation involving the 18q11 band two orange/green fusion signals are expected representing two normal (non-rearranged) 18q11 loci. A signal pattern consisting of one orange/green fusion signal, one orange signal, and a separate green signal indicates one normal 18q11 locus and one 18q11 locus affected by an 18q11 translocation. However, we recommend the use of a control sample in which the 18q11 status is known to judge the specificity of the signals with each hybridization reaction. Care should be taken not to evaluate overlapping cells, in order to avoidfalse results, e.g. an amplification of genes. Due to decondensedchromatin, single FISH signals can appear as small signal clusters. Thus, two or three signals of the same size, separated by a distance equal to orless than the diameter of one signal, should be counted as one signal. #### **Limitations of the Procedure** Correct treatment of tissues prior to and during fixation, embedding, and sectioning is important for obtaining optimal results. Inconsistent results may be due to variations in tissue processing, as well as inherent variations in tissue. The results from *in situ* hybridization must be correlated with other laboratory findings. # **Bibliography** - 1. Gall, J. G. and Pardue, M. L. (1969). *Proc. Natl. Acad. Sci. USA*63, 378 -383. - **2.** Rudkin, G. T. and Stollar, B. D. (1977). *Nature* 265,472-473. - **3.** Hougaard, D. M., Hansen, H. and Larsson, L. I. (1997). *Histochem. Cell Biol.* 108.335 -344. - **4.** Bauman, J. G., Wiegant, J., Borst, P. and van Duijn, P. (1980). *Cell Res.* 128,485 -490. - **5.** O'Connor et al. (2008). *Nature Education* 1(1):171. - **6.** Michiko Ishida,Mamiko Miyamoto et al. (2007). MOLECULAR AND CELLULAR BIOLOGY, p. 1348–1355. - 7. Marc Ladanyi et al. (2001). Volume 20, Number 40, Pages 5755-5762. **8.** .Fligman, F. Lonardo et al. (1995). American Journal of Pathology, Vol. 147, No. 6. | 2°C -8°C | Temperature
Limitation | IVD | In Vitro
Diagnostic
Medical Device | |----------------|---|-----|--| | 53 | Use By Date | LOT | Batch Code | | NON
STER LE | Non-Sterile | | Consult
Instructions for
Use | | EC REP | Representative
in the
European
Community | 4 | BioGenex |