

Fremont CA 9/1538

Tel: +1 (800) 421-4149, Fax: +1 (510) 824-1490,

support@biogenex.com

DATA SHEET eFISH PDGFB Dual Color Break Apart Probe

Catalog No.

FP053-10X- 100µl-10 test FP053-20X- 200µl-20 test

Doc No: 932-FP053 Rev: C Date of Release: 05-Aug-2020

Material Provided: One vial of eFISH probe in hybridization buffer (RTU).

Recommended detection system (Not supplied):

Either of the following detection system is recommended depending on the automation/manual platform used:

eFISH Kit	Cat #	Description
eFISH Histo	DF-500-20XE	Automation/
eFISH Cyto	DF-510-20XE	Automation

Intended Use:

The BioGenex eFISH PDGFB Dual Color Break Apart Probe is currently available for Research use only.eFISH PDGFB Dual Color Break Apart Probeis designed to detect translocations involving the PDGFBgene at 22q13in formalin-fixed, paraffin-embedded tissue or cells by fluorescence in situ hybridization (FISH).

BioGenex eFISH PDGFB Dual Color Break Apart Probe comes in hybridization buffer. The probe contains green-labeled polynucleotides (Green: excitation at 503 nm and emission at 528 nm, similar to FITC) targeting sequences in 22q13 distal to PDGFB gene and Orange labeled polynucleotides (Orange: excitation at 547 nm and emission at 572 nm, similar to rhodamine), which target sequences mapping in 22q13 proximal to the PDGFB gene.

Summary and Explanation

Fluorescence *in situ* hybridization (FISH) is a robust technique of cytogenetic used for the detection of chromosomal aberrations, presence or absence of specific DNA sequence in native context. In this technique florescent probes bind to the target sequence of DNA in chromosome. High specificity and sensitivity coupled rapid and an accurate result has proven role of FISH in both research and diagnosis of solid tumor and hematological malignancies. As technique of cancer cytogenetics, FISH, can be used to identify genetic

aberrations viz., deletions, amplification and translocation in tissue sections or within individual cells. FISH is also used for use in genetic counseling, medicine, and species identification. FISH can also be used to detect and localize specific RNA targets in cells, circulating tumor cells, and tissue samples 1,2,3,4,5.

In FISH procedure, fixed tissue sections are pretreated to expose target DNA or mRNA sequences. An appropriately labeled probe is hybridized to the exposed target DNA or mRNA sequences in the cells. Subsequent stringent washing steps remove any probe that is non-specifically bound to the tissue section. Subsequently slides are mounted using DAPI/antifade and can be visualized under fluorescence microscope using appropriate filter set.

Principles of the Procedure

In Situ hybridization (ISH) allows the detection and localization of definitive nucleic acid sequences directly within a cell or tissue. High specificity is ensured through the action of annealing of fluorescence probe nucleic acid sequence to complementary target nucleic acid sequence. ISH techniques can be used to identify genetic aberrations like deletions, amplification, and translocationin tissue sections or within individual cells.

Storage and Handling

BioGenex eFISH PDGFB Dual Color Break Apart Probe must be stored at 2-8°C protected from light and is stable through the expiry date printed on the label.

Specimen Collection and Slide Preparation

Tissues fixed in 10% (v/v) formalin are suitable for use prior to paraffin embedding and sectioning.

FISH Staining procedure

- (a) The BioGenex eFISH probes are supplied in hybridization buffer and used without further dilution.
- (b) Protocol:

Please refer to the eFISH probe specific instruction/protocol for automated or semiautomated FISH processing platform (Xmatrx®-Infinity, Xmatrx®-Nano and Xmatrx®mini.

Further processing, such as washing and counter-staining, can becompleted according to the user's needs. For a particularly user-friendlyperformance, we recommend the use of a BioGenexeFISH kit.

These systems were also used for the confirmation of appropriateness of the eFISH PDGFB Dual Color Break Apart Probe.

Disclaimer: The above information is provided for reference only. Each end-user is

48810 Kato Road, Suite 100E & 200E,

Fremont, CA 94538

Tel: +1 (800) 421-4149, Fax: +1 (510) 824-1490,

support@biogenex.com

responsible for developingand validating optimal testing conditions for use with this product.

Troubleshooting

Contact BioGenex Technical Service Department at **1-800-421-4149 or your local distributor** to report unusual staining.

Expected Results

The use of eFISH PDGFB Dual Color Break Apart Probe along with appropriate filters produces orange and green signal for hybridization regions of 22q13. Normal interphase cells or cells without 22q13 translocation, two orange/two green fusion signals appear. In regions where 22q13 is affected by translocation, one separate green signal and one separate orange signal are observed.

However, we recommend the use of a control sample in which the translocation status of 22q13 is known to judge the specificity of the signals with each hybridization reaction.

Care should be taken not to evaluate overlapping cells, in order to avoid false results, e.g. an amplification of genes. Due to decondensed chromatin, single FISH signals can appear as small signal clusters. Thus, two or three signals of the same size, separated by a distance equal to or less than the diameter of one signal, should be counted as one signal.

Limitations of the Procedure

Correct treatment of tissues prior to and during fixation, embedding, and sectioning is important for obtaining optimal results. Inconsistent results may be due to variations in tissue processing, as well as inherent variations in tissue. The results from *in situ* hybridization must be correlated with other laboratory findings.

Bibliography

- 1. Gall, J. G. and Pardue, M. L. (1969). Proc. Natl. Acad. Sci. USA63, 378 -383.
- 2. Rudkin, G. T. and Stollar, B. D. (1977). *Nature* 265,472-473.
- Hougaard, D. M., Hansen, H. and Larsson, L. I. (1997). Histochem. Cell Biol. 108,335 -344.
- **4.** Bauman, J. G., Wiegant, J., Borst, P. and van Duijn, P. (1980). *Cell Res.* 128,485 490.
- **5.** O'Connor et al. (2008). *Nature Education* 1(1):171.
- **6.** Kievits T, et al. (1990) Cytogenet Cell Genet 53: 134-6.

- 7. Labropoulos SV, Razis ED (2007) Biologics 4: 347-53.
- **8.** Patel KU, et al. (2008) Human Pathol 39: 184-93.
- **9.** Shimizu A. et al. (1999) Cancer Res 59: 3719-23.
- **10.** Simon MP, et al. (1997) Nat Genet 15: 95-8.