48810 Kato Road, Suite 100E & 200E Fremont, CA 94538 Tel: +1 (800) 421-4149, Fax: +1 (510) 824-1490, $\underline{support@biogenex.com}$ # DATA SHEET eFISH FGFR2/CEN 10 Dual Color Probe Catalog No. FP055-10X- 100μ l-10 test FP055-20X- 200μ l-20 test Doc No: 932-FP055 Rev: C Date of Release: 05-Aug-2020 Material Provided: One vial of eFISH probe in hybridization buffer (RTU). Recommended detection system (Not supplied): Either of the following detection system is recommended depending on the automation/manual platform used: | eFISH Kit | Cat # | Description | |-------------|-------------|-------------| | eFISH Histo | DF-500-20XE | Automation | | eFISH Cyto | DF-510-20XE | Automation | ## **Intended Use**: The BioGenex eFISH FGFR2/CEN 10 Dual Color Probe is currently available for Research use only.eFISH FGFR2/CEN 10 Dual Color Probeis designed to detect human FHFR2 gene as well as chromosome 10 alpha-satellites in formalin-fixed, paraffinembedded tissue or cells by fluorescence in situ hybridization (FISH). BioGenex eFISH FGFR2/CEN 10 Dual Color Probecomes in Ready to use formatin hybridization buffer. The probe contains green-labeled polynucleotides (Green: excitation at 503 nm and emission at 528 nm, similar to FITC which targets FGFR2 geneand orangelabeled polynucleotides (Orange: excitation at 547 nm and emission at 572 nm, similar to rhodamine), which targets alpha satellite-sequences of the centromere of chromosome 10. #### **Summary and Explanation** Fluorescence *in situ* hybridization (FISH) is a robust technique of cytogenetic used for the detection of chromosomal aberrations, presence or absence of specific DNA sequence in native context. In this technique florescent probes bind to the target sequence of DNA in chromosome. High specificity and sensitivity coupled rapid and an accurate result has proven role of FISH in both research and diagnosis of solid tumor and hematological malignancies. As technique of cancer cytogenetics, FISH, can be used to identify genetic aberrations viz., deletions, amplification and translocation in tissue sections or within individual cells. FISH is also used for use in genetic counseling, medicine, and species identification. FISH can also be used to detect and localize specific RNA targets in cells, circulating tumor cells, and tissue samples^{1,2,3,4,5}. In FISH procedure, fixed tissue sections are pretreated to expose target DNA or mRNA sequences. An appropriately labeled probe is hybridized to the exposed target DNA or mRNA sequences in the cells. Subsequent stringent washing steps remove any probe that is non-specifically bound to the tissue section. Subsequently slides are mounted using DAPI/antifade and can be visualized under fluorescence microscope using appropriate filter set. #### **Principles of the Procedure** *In Situ* hybridization (ISH) allows the detection and localization of definitive nucleic acid sequences directly within a cell or tissue. High specificity is ensured through the action of annealing of fluorescence probe nucleic acid sequence to complementary target nucleic acid sequence. ISH techniques can be used to identify genetic aberrations like deletions, amplification, and translocationin tissue sections or within individual cells. ### Storage and Handling BioGenex eFISH FGFR2/CEN 10 Dual Color Probemust be stored at 2-8°C, protected from light and is stable through the expiry date printed on the label. ## **Specimen Collection and Slide Preparation** Tissues fixed in 10% (v/v) formalin are suitable for use prior to paraffin embedding and sectioning. #### **FISH Staining procedure** - (a) The BioGenex eFISH probes are supplied in hybridization buffer and used without further dilution. - (b) Protocol: Please refer to the eFISH probe specific instruction/protocol for automated or semi-automated FISH processing platform (Xmatrx®-Infinity, Xmatrx®-Nano and Xmatrx®-mini. Further processing, such as washing and counter-staining, can becompleted according to the user's needs. For a particularly user-friendlyperformance, we recommend the use of a BioGenexeFISH kit. These systems were also used for the confirmation of appropriateness of the eFISH FGFR2/CEN 10 Dual Color Probe. Disclaimer: The above information is provided for reference only. Each end-user is responsible for developing and validating optimal testing conditions for use with this product. 48810 Kato Road, Suite 100E & 200E Fremont, CA 94538 Tel: +1 (800) 421-4149, Fax: +1 (510) 824-1490, support@biogenex.com ## **Troubleshooting** Contact BioGenex Technical Service Department at 1-800-421-4149 or your local distributor to report unusual staining. # **Expected Results** The use of eFISH FGFR2/CEN 10 Dual Color Probealong with appropriate filters produces green signal for FGFR2 gene and the hybridization signals of the labeled alphasatellite-sequences of the centromere of chromosome 10 appear orange. Normal interphase cells or cells without aberrations of chromosome 10, two FGFR2 signals and two chromosome 10 signals appear. Cells with a gene amplification have an increased number of gene specific signals or signal clusters. However, we recommend the use of a control sample in which the chromosome 10 and FGFR2 gene copy number is known to judge the specificity of the signals with each hybridization reaction. Care should be taken not to evaluate overlapping cells, in order to avoid false results, e.g. an amplification of genes. Due to decondensed chromatin, single FISH signals can appear as small signal clusters. Thus, two or three signals of the same size, separated by a distance equal to or less than the diameter of one signal, should be counted as one signal. #### **Limitations of the Procedure** Correct treatment of tissues prior to and during fixation, embedding, and sectioning is important for obtaining optimal results. Inconsistent results may be due to variations in tissue processing, as well as inherent variations in tissue. The results from *in situ* hybridization must be correlated with other laboratory findings. ## **Bibliography** - 1. Gall, J. G. and Pardue, M. L. (1969). Proc. Natl. Acad. Sci. USA63, 378 -383. - 2. Rudkin, G. T. and Stollar, B. D. (1977). *Nature* 265,472-473. - Hougaard, D. M., Hansen, H. and Larsson, L. I. (1997). Histochem. Cell Biol. 108,335 -344. - **4.** Bauman, J. G., Wiegant, J., Borst, P. and van Duijn, P. (1980). *Cell Res.* 128,485 490. - **5.** O'Connor et al. (2008). *Nature Education* 1(1):171. - 6. Azuma K et al. (2011). BiochemBiophys Res Commun 407: 219–224 - **7.** Katoh M et al. (2010). 10(9):1375-9 - 8. Kievits, T. et al. Cytogenet. Cell Genet. 53, 134–136 (1990). - **9.** Shimizu A, et al. (1999) Cancer Res 59: 3719-23.